Sparse Hard Sets for P

نویسندگان

  • Dieter van Melkebeek
  • Mitsunori Ogihara
چکیده

Sparse hard sets for complexity classes has been a central topic for two decades. The area is motivated by the desire to clarify relationships between completeness/hardness and density of languages and studies the existence of sparse complete/hard sets for various complexity classes under various reducibilities. Very recently, we have seen remarkable progress in this area for low-level complexity classes. In particular, the Hartmanis’ sparseness conjectures for P and NL have been resolved. This article overviews the history of sparse hard set problems and exposes some of the recent results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Hard Sets for P Yield Space-eecient Algorithms

In 1978, Hartmanis conjectured that there exist no sparse complete sets for P under logspace many-one reductions. In this paper, in support of the conjecture, it is shown that if P has sparse hard sets under logspace many-one reductions, then P DSPACE[log2 n]. The result is derived from a more general statement that if P has 2polylog sparse hard sets under poly-logarithmic space-computable many...

متن کامل

Consequences of the Existence of Sparse Sets Hard for NP under a Subclass of Truth-Table Reductions

The consequences of the existence of sparse hard sets for NP have been investigated for nearly 20 years. Many surprising results have been found, e.g. the result of Ogihara and Watanabe that P = NP is implied by the existence of sparse pbtt -hard sets for NP. It is clear that the existence of sparse hard sets for a weak reduction (e.g. pm) implies stronger results than the existence of sparse h...

متن کامل

On the Sparse Set Conjecture for Sets with Low Denisty

We study the sparse set conjecture for sets with low density. The sparse set conjecture states that P = NP if and only if there exists a sparse Turing hard set for NP. In this paper we study a weaker variant of the conjecture. We are interested in the consequences of NP having Tur-ing hard sets of density f (n), for (unbounded) functions f (n), that are sub-polynomial, for example log(n). We es...

متن کامل

Sparse Hard Sets for P Yield Space-Efficient Algorithms

In 1978, Hartmanis conjectured that there exist no sparse comAbstract-1 plete sets for P under logspace many-one reductions. In this paper, in support of the conjecture, it is shown that if P has sparse hard sets under logspace many-one reductions, then P ⊆ DSPACE[log2 n].

متن کامل

Sparse Hard Sets for P: Resolution of a Conjecture of Hartmanis

Building on a recent breakthrough by Ogihara, we resolve a conjecture made by Hartmanis in 1978 regarding the (non-) existence of sparse sets complete for P under logspace many-one reductions. We show that if there exists a sparse hard set for P under logspace many-one reductions, then P = LOGSPACE. We further prove that if P has a sparse hard set under many-one reductions computable in NC1, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997